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A New Sample Size Formula for Regression

ABSTRACT

When multiple regression is used to develop a prediction model, sample size must be

large enough to ensure stable coefficients. If sample size is inadequate, the model may not

predict well in future samples. Unfortunately, there are problems and contradictions among the

various sample size methods in regression. For example, how does one reconcile differences

between a 15:1 subject-to-variable ratio and a 30:1 rule?

The purpose of this study was to validate a precision power method for determining

sample sizes in regression. The method uses a cross-validity approach to selecting sample sizes

so that models will predict as well as possible in future samples. The simple formula, which is

an algebraic manipulation of a cross-validation formula, enables researchers to limit the

expected shrinkage of R2.

Using a Monte Carlo simulation study, the precision power method was compared to

eight other methods and was the only method which provided consistently accurate and

acceptable precision power rates. That is, when precision power was set a priori, actual

precision power rates consistently fell within an acceptable interval around that given power

rate.

OBJECTIVES

Most researchers who use regression analysis to develop prediction equations are not only

concerned with whether the multiple correlation coefficient or some particular predictor is

Paper presented at the annual meeting of the Mid-Western Educational Research Association,

October 1995, Chicago, IL.
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significant, but they are also especially concerned with the generalizability of the regression model

developed. However, the process of maximizing the correlation between the observed and

predicted criterion scores requires mathematical capitalization on chance; that is, the correlation

obtained is a maximum only for the particular sample from which it was calculated. If the

estimate of the population multiple correlation decreases too much in a second sample, the

regression model has little value for prediction. Because of this possibility, researchers must

ensure that their studies have adequate power so that results will generalize; the best way to

ensure this power, and therefore stable regression weights, is to use a sufficiently. large sample.

Despite encouragement from scholars, many researchers continue to ignore power in their

studies (Cohen, 1992; Sedlmeier & Gigerenzer, 1989; Stevens, 1992b). This situation is

compounded for multiple regression research even though several methods exist for choosing

sample sizes for power. Unfortunately, as Olejnik noted in 1984 and was confirmed during the

current research, many regression textbooks do not discuss the issue of sample size selection (e.g.

Dunn & Clark, 1974; Kleinbaum, Kupper, & Muller, 1987; Montgomery & Peck, 1992;

Weisberg, 1985) or simply provide a rule-of-thumb (e.g. Cooley & Lohnes, 1971; Harris, 1985;

Kerlinger & Pedhazur, 1973; Tabachnick & Fidel], 1989), possibly because there are problems
a

and contradictions among the various methods. These methods can be grouped loosely into three

categories: rules-of-thumb, statistical power methods, and cross-validation methods. For

example, how does one reconcile differences between a 15:1 subject-to-variable ratio and a 30:1

rule? Furthermore, the many rules-of-thumb lack any measure of effect size, which is generally

recognized as a critical element in the determination of sample sizes. Cohen's (1988) methodsare

derived from a fixed model and statistical power approach to regression; however, a random
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model and cross-validation approach, like Park and Dudycha's (1974), may be more appropriate

in the social sciences, where a prediction function is often desired. This is because generalizability

is the primary consideration for the development of a prediction model, whereas statistical power

is the main concern when regression is used to test hypotheses about relationships between

variables.

Therefore, the purpose of this paper is to reduce uncertainty about regression sample

sizes. Through a Monte Carlo power study, a new and accessible method for calculating

adequate sample sizes for multiple linear regression analyses will be validated. Because the new

method, which will be called the precision power method, is developed primarily from a cross-

validation approach, the next section begins from that perspective. However, because some

aspects of the precision power method have been adapted from both the rules-of-thumb and the

statistical power approach, a brief discussion of each will be included.

PERSPECTIVES

Cross-Validation and Shrinkage

Because the expected value of the sample multiple correlation (i.e. an average correlation

over many samples) is an overestimate of the population multiple correlation, researchers have

employed a number of methods to "shrink" R2 and thereby provide better estimates of true

population multiple correlations. Formula methods of shrinkage are typically preferred to

empirical cross-validation (data-splitting) so that the entire sample may be used for model-

building. Indeed, several common formula estimates have been shown superior to empirical

cross-validation techniques (Cattin, 1980a; 1980b; Kennedy, 1988; Murphy, 1982; Schmitt,

Coyle, & Rauschenberger, 1977).
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Two types of formulas have been developed: shrinkage estimates and cross-validity

estimates (see Table 1). Shrinkage formulas are used to estimate more accurately the squared

population multiple correlation, p2, also called the coefficient of determination. The multiple

correlation, p, is the correlation between the criterion and the regression function if both are

calculated in the population (Herzberg, 1969; Stevens, 1992a). For example, a researcher who

calculates a sample R2=.3322 with 121 subjects and 3 predictors might use an adjusted R2 formula

to conclude that, in the population, the multiple correlation between the criterion and the

predictors is approximately p=.5613, since R2=.3151.

Cross-validity formulas, which are based on estimates of the mean squared error of

prediction, provide more accurate estimates of the squared population cross-validity coefficient,

p2. The values of R2, the sample estimates of cross-validity, will vary from sample to sample;

however, the expected value of Reg (that is, the average over many samples) approximates pee.

This cross-validity coefficient can be thought of as the squared correlation between the actual

population criterion values and the scores predicted by the sample regression equation when

applied to the population or to another sample (Kennedy, 1988; Schmitt et al., 1977). For

example, a researcher who calculates a sample R2=.3322 with 121 subjects and 3 predictors might

use a cross-validity formula to calculate the sample cross-validity coefficient as R2=.2916. This

cross-validity coefficient implies that the researcher would explain 29%, not 33%, of the variance

of the criterion when applying the sample regression function to future samples.

The most common estimate of shrinkage reported in the literature (and in statistical

packages) is an adjusted R2 that is attributed most frequently to Wherry (1931). However, when

researchers are interested in developing a regression model to predict for future subjects, they
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should report both Rae (for descriptive purposes) and Reg, which indicates how well their sample

equation may predict in subsequent samples (Cattin, 1980b; Huberty & Mourad, 1980). Indeed,

Uhl and Eisenberg (1970) found that a cross-validity estimate (which they attribute to Lord,

1950) was consistently more accurate than Wherry's shrinkage formula in this regard. Some of

the more familiar cross-validity formulas are those by Stein (1960), Darlington (1968), Lord

(1950), Nicholson (1960), and Browne (1975).

Cross-Validation Approach to Sample Sizes

Park and Dudycha (1974) took a cross-validation approach to calculating sample sizes.

They noted that such a cross-validation approach is applicable to both the random and the fixed

models of regression; however, because the fixed model poses no practical problems, they

emphasized the random model. In the random model, both the predictors and the criterion are

sampled together from a joint multivariate distribution. The fixed model, on the other hand,

assumes that the researcher is able to select or control the values of the independent variables

before measuring subjects on the random dependent variable. The random model is usually more

appropriate to social scientists because they typically measure subjects on predictors and the

criterion simultaneously and therefore are not able to fix the values for the independent variables

(Brogden, 1972; Cattin, 1980b; Claudy, 1972; Drasgow, Dorans, & Tucker, 1979; Herzberg,

1969; Park & Dudycha, 1974; Stevens, 1986, 1992a). For a more complete discussion of the

random and fixed models, the reader is referred to Afifi and Clark (1990), Brogden (1972), Dunn

and Clark (1974), Johnson and Leone (1977), and Sampson (1974).

Park and Dudycha derived the following sample size formula: INT[(1-p2)5 ,2/p2]-Fp+2,

where 812 is the noncentrality parameter for the t-distribution. Researchers determine the
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probability with which they want to approximate p within some chosen error tolerance. The

formula for this probability is: P(p- peE)=y . The researcher chooses (a) an assumed p2 as the

effect size, (b) the absolute error willing to be tolerated, E, and (c) the probability of being within

that error bound, y. The tables provided by Park and Dudycha (most of which were reprinted in

Stevens, 1986, 1992a) can then be consulted with these values. Unfortunately, their tables are

limited to only a few possible combinations of sample size, squared correlation, and epsilon. Also

unfortunately, their math is too complex for most researchers to derive the information they

would need for the cases not tabulated. Additionally, there is no clear rationale for how to

determine the best choice of either epsilon or the probability to use when consulting the tables

(although Stevens, 1992a, implied through examples that .05 and .90, respectively, are acceptable

values).

Rules of Thumb for Selecting Sample Sizes

The most extensive literature regarding sample sizes in regression analysis is in the area of

experiential rules. Many scholars have suggested rules-of-thumb for choosing sample sizes that

they claim will provide reliable estimates of the population regression coefficients. That is, with a

large enough ratio of subjects to predictors, the estimated regression coefficients will be reliable

and will closely reflect the true population parameters since shrinkage will be slight (Miller &

Kunce, 1973; Pedhazur & Schmelkin, 1991; Tabachnick & Fidell, 1989). This is true because as

the number of subjects increases relative to the number of predictors, both R2 and p02 converge

toward p2, and therefore the amount of shrinkage decreases (Cattin, 1980a).

Rules-of-thumb typically take the form of a subject-to-predictor (N/p) ratio. Table 2

shows that statisticians have recommended using as small a ratio as 10 subjects to each predictor

8
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and as large a ratio as 40:1. For example, Stevens (1986) recommended a 15:1 subject-to-

variable ratio, which he based primarily on an analysis of Park and Dudycha's (1974) tables.

Harris (1985) noted, however, that ratio rules-of-thumb clearly break down for small numbers of

predictors. Some scholars have suggested that a minimum of 100, or even 200, subjects is

necessary regardless of the number of predictors (e.g. Kerlinger & Pedhazur, 1973). Indeed,

Green (1991) found that a combination formula such as N>50+8p was much better than subject-

to-variable ratios alone. Additionally, Sawyer (1982) developed a formula based on limiting the

inflation of mean squared error. Sawyer's formula, N?_[(2k2-1)+k2p1/(k2-1), easily simplifies into a

combination rule once the inflation factor, k, is chosen. Finally, perhaps the most widely used

rule-of-thumb was described by Olejnik (1984): "use as many subjects as you can get and you can

afford" (p. 40).

The most profound problem with many rules-of-thumb advanced by regression scholars is

that they lack any measure of effect size. Indeed, even Sawyer's inflation factor is not an effect

size. It is generally recognized that an estimated effect size must precede the determination of

appropriate sample size. Effect size enables a researcher to determine in advance not only what

will be necessary for statistical significance, but also what is required for practical significance

(Hinkle & Oliver, 1983). The next section includes a more complete discussion of effect size and

its importance in statistical power analysis.

Statistical Power Approach

"The power of a statistical test is the probability that it will yield statistically significant

results" (Cohen, 1988, p. 1). That is, statistical power is the probability of rejecting the null

hypothesis when the null hypothesis is indeed false. Statistical power analysis requires the

9



Precision Power - 9

consideration of at least four parameters: level of significance, power, effect size, and sample

size. These four parameters are related such that when any three are fixed, the fourth is

mathematically determined (Cohen, 1992). Therefore, it becomes obvious that it is necessary to

consider power, alpha, and effect size when attempting to determine a proper sample size. This is

a fixed model approach to regression, however, and is most useful when researchers use

regression as a means to explain the variance of a phenomenon in lieu of analysis of variance. It is

useful, though, to discuss effect size regardless of the approach to regression that is taken.

In any statistical analysis, there are three strategies for choosing an appropriate effect size:

(a) use effect sizes found in previous studies, (b) decide on some minimum effect that will be

practically significant, or (c) use conventional small, medium, and large effects (Cohen & Cohen,

1983). Cohen (1988) defined effect size in fixed model multiple regression as a function of the

squared multiple correlation, specifically f2=R2/(1-R2). Since R2 can be used in the formulas

directly, Cohen also defined effect sizes in terms of R2 such that small effect R2=.02, medium

effect R2=.13, and large effect R2=.26. Cohen's (1988) sample size is calculated as N=A(1-R2)/R2,

where A is the noncentrality parameter required for the noncentral F-distribution. Cohen's (1988)

tables provide the A needed for the sample size formula.

For prediction studies, the fundamental problem with Cohen's (1988) method, and Green's

(1991) formula based on Cohen's method, is that it is designed for use from a fixed model,

statistical power approach. And although Gatsonis and Sampson (1989) use the random model

approach, their method is also based on a statistical power approach to sample size determination.

Unfortunately, statistical power to reject a null hypothesis of zero multiple correlation does not

inform us how well a model may predict in other samples. That is, adequate sample sizes for

10
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statistical power tell us nothing about the number of subjects needed to obtain stable, meaningful

regression weights (Cascio, Valenzi, & Silbey, 1978). Therefore, selecting a sample size based on

statistical power tests may be useful in selecting predictors to include in a final model, but it will

not ensure adequate sample size to allow a regression equation to generalize to other samples

from the given population.

Preliminary Study: The Rozeboom-based Method

Because the methods described above (a) provide contradictory sample size

recommendations, (b) either oversimplify the issue or are too mathematically complex for many

researchers to use, and (c) are not all based on the random model, a new sample size selection

method for multiple regression was developed. The cross-validity formula in Table 1 developed

by Rozeboom (1978) was adapted to form the sample size formula:

N [p (2 - 2R2 + )] / E, (1)

where p is the number of predictors, R2 is the expected sample value, and E is the acceptable

absolute amount of shrinkage, such that E=R2-11c2.

A Monte Carlo power study was conducted to determine the efficacy of the new

Rozeboom-based method as compared to several existing methods of selecting regression sample

sizes. A more complete discussion of this preliminary study was presented in Brooks and

Barcikowski (1994). The Rozeboom-based method and Park and Dudycha's (1974) method

consistently produced the highest rates of predictive power. However, closer inspection of the

results indicates two undesirable characteristics of all the methods examined. First, although the

relative rankings of the methods remained fairly consistent across predictors, their absolute power

rates did not. For example, with expected R2=.25 and p2z .25, the Rozeboom-based method

11
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provided a predictive power rate of .71 with two predictors, .75 with three predictors, .76 with

four predictors, and .80 with both eight and 15 predictors. Park and Dudycha's method and both

the 15:1 and 30:1 rules exhibited similar results. Interestingly, Cohen's method, Gatsonis and

Sampson's method, and the combination formula N=50+8p showed the opposite trend; that is,

power decreased as the number of predictors increased.

Second, the predictive power rates of all but Cohen's method decreased as the expected R2

decreased when expected R2z p2 (Cohen's method provided its highest power rates when

expected R2 was smallest). For example, with three predictors, the Rozeboom-based method

provided PP=.88 when p2 . 5 0 and R2=.50, PP=.75 when p2z.25 and R2=.25, and PP=.64 when

p2z.10 and R2=.10. Therefore, appropriate sample sizes were often too large when expected R2

was larger, but were underestimated for smaller expected R2 values.

The theory behind the method was that the researcher, knowing shrinkage was likely to

occur, could set a limit as to the amount of shrinkage that would result. However, Rozeboom's

formula overestimates both of the most widely accepted formulas, Darlington-Stein (Darlington,

1968; Stein, 1960) and Lord-Nicholson (Lord, 1950; Nicholson, 1960). Therefore, the shrinkage

that occurred when using the Darlington-Stein formula was greater than the Rozeboom-based

formula suggested. For example, in the case of two predictors with expected R2=.25 and p2z.25,

cross-validity shrinkage (what Stevens would call "loss in predictive power") was .05 as expected

when calculated with the Rozeboom formula, but was .06 when using Darlington-Stein. Since the

definition of power used the Darlington-Stein estimate, the power rates were not as accurate as

expected. In the example, predictive power was found to be .75 but was expected to be .80.

12
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The New Precision Power Method

The preliminary study confirmed that the Rozeboom-based method provided consistently

higher power rates than the other methods examined. However, informed choice of sample size

requires that researchers be able to set power a priori, not simply use the method which provides

the highest power. Closer scrutiny has shown that all existing methods, including the Rozeboom-

based method, share the inconsistencies described above across number of predictors and across

expected R2 values. As a result, none of the methods provides a reliable means to set power in

advance of the research. Therefore, the purpose of this paper was to extend the analysis to

determine if any method can provide consistently accurate power rates, not simply the highest

rates. A new sample size formula was developed based on Lord (as cited in Uhl & Eisenberg,

1970). (It should be noted that the Lord formula cited by Uhl and Eisenberg (1970) differs from

the most common interpretation of Lord's 1950 paper, which is represented in Table 1). The

Lord formula was chosen primarily because it provides cross-validity estimates that typically

underestimate the Darlington-Stein values rather than overestimate them, as does the Rozeboom

formula.

Like Rozeboom's (1978) cross-validity formula, Lord's "relatively unknown formula" (Uhl

& Eisenberg, 1970, p. 489) is linear in all parameters, which makes it ideal for algebraic

manipulation:

Reg = 1 - [(N+p+1)(1-R2) / (N-p-1)], (2)

where N is sample size, p is the number of predictors, and R2 is the actual sample value. Uhl and

Eisenberg (1970) found this formula to give accurate estimates of "cross-sample" shrinkage,
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regardless of sample size and number of predictors. Algebraic manipulation and simplification of

the formula to solve for sample size yields:

N = [(p +1) (2-2R2+E)] / E, (3)

where p is the number of predictors, R2 is the expected sample value, and E is an acceptable

amount of shrinkage (i.e. E =R2-R2). This value of E allows researchers to decide how closely to

estimate p2 from expected R2, as it did in the Rozeboom-based formula.

This new precision power formula (3) includes the same effect size parameter, in the form

of expected R2, as the Rozeboom-based method. The precision power formula also has the same

capacity for simplification as the Rozeboom-based formula: either an absolute amount of

acceptable shrinkage (e.g. E=.05) or a proportional decrease (e.g. E=.2R2, which represents

shrinkage of 20%). For example, if a researcher wanted an estimate of p2 not less than 80% of

the sample R2 value, the formula (3) can be reformulated using E = R2-.8R2= .2R2, such that

N [(p + 1) (2 - 1.8R2)] / 0.2R2; (4)

or if the researcher wanted a p2 estimate not less than 75% of the sample R2 value, the formula

would be reformulated such that E = .25R2:

N [(p + 1) (2 - 1.75R2)] / 0.25R2. (5)

If the researcher did not want the sample R2 to decrease by more than .05 no matter what the

expected value of R2, formula (3) simplifies to

N 20 (p + 1) (2.05 - 2R2); (6)

or if the researcher did not want the sample R2 to decrease by more than .03, then

N > 33 (p + 1) (2.03 - 2R2). (7)
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Because the Lord-based precision power sample size method is based on a cross-

validation formula which more closely approximates the Darlington-Stein formula than does the

Rozeboom cross-validity formula, it was expected that precision power rates would be more

consistently accurate. However, there is no way to compare this method to current methods

mathematically. Therefore, a Monte Carlo power study was performed to determine the efficacy

of the new method as compared to several existing methods, especially the Rozeboom-based

method. The next section describes this study in detail.

METHODS AND DATA

Ideally, a mathematical proof would be provided that would compare directly the

efficacies of existing sample size methods and the new precision power method offered in this

paper (Halperin, 1976; Harwell, 1990). However, the several sample size selection methods

compared here are based on different probability distributions, making direct comparison

problematic. For example, Park and Dudycha (1974) base their work on the probability density

function of IV, Cohen (1988) bases his material on the noncentral x2 distribution, Gatsonis and

Sampson (1989) base their method on the distribution of Rv, and rules-of-thumb are not based on

probability distributions at all.

Fortunately, meaningful comparisons among the power rates of these methods can be

accomplished through a Monte Carlo study. Monte Carlo methods use computer assisted

simulations to provide evidence for problems that cannot be solved mathematically. In Monte

Carlo statistical power studies, random samples are generated and used in a series of simulated

experiments in order to calculate empirical power rates. That is, many random samples are

generated such that the null hypothesis is known to be false (e.g. the multiple correlation is non-
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null) and then the actual number of tests that are correctly rejected are counted. After all samples

are completed, a proportion is calculated that represents the actual statistical power rate. This

methodology is adapted here to apply to the precision power being studied.

Definition of Precision Power

While several scholars have used the term predictive power (e.g. Cascio et al., 1978;

Kennedy, 1988; Stevens, 1986, 1992a), only Cattin (1980a) has provided a formal definition.

Cattin (1980a) noted that the two common measures of predictive power are the mean squared

error of prediction and the cross-validated multiple correlation. However, Cattin was discussing

predictive power in regard to the comparison and selection of competing regression models.

Stevens (1986, 1992a), who discussed predictive power as an aspect of model validation, used the

term to mean how well a derived regression equation will predict in other samples from the same

population. Therefore, a "loss in predictive power" to Stevens is simply the size of the decrease in

the sample R2 when an appropriate shrinkage or cross-validity formula is applied.

Although both Cattin's and Steven's definitions of predictive power could be applied to the

current circumstances in some fashion, neither would provide any sense of the magnitude of error

as compared to the original R2 value. For example, a loss in predictive power (as Stevens defines

it) of .20 suggests drastically different results if the sample R2 is .50 than if the sample R2 is .25.

Because they desire a regression model that predicts well in subsequent samples, researchers hope

to limit shrinkage as much as possible relative to the sample R2 value they attained. Therefore, a

concept is required that provides more information about the magnitude of shrinkage relative to

sample values.

16
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Therefore the term precision power has been defined for this study to indicate how well a

regression function is expected to perform if applied to future samples. The term is adapted from

Darlington (1990), who used the phrase "precision of estimates" to oppose the "power of

hypothesis tests" during his introduction to a chapter on choosing sample sizes (p. 379).

Precision power is defined more precisely as Rc2/R2, which can be inferred and adapted from an

example used by Stevens (1992a, p. 100). With a larger sample, this fraction would be larger

because less shrinkage occurs with larger samples, all else remaining constant. Using Stevens'

example, a 61.8% shrinkage from sample R2=.50 to Re2=.191 occurs with a sample size of 50;

when the sample is increased to 150, there is only a 15.8% shrinkage from R2=.50 to Rc2=.421.

The precision power, as defined in this paper, in the first case would be .191/.50=.382, and

precision power in the second case is .421/.50=.842.

The definition of precision power,

PP = Rc2a2, (8)

can be used a priori with the newly developed sample size method by algebraically manipulating

the formula (8) and by setting R2 equal to the expected value of R2 in the population. By adding

and subtracting one from the fraction,

PP = 1 - (R2/R2) + (R2 /R2). (9)

Combining the fractions provides

PP = 1 (R2 - Re2)/R2. (10)

The fraction which now remains, (R2_Rc2)/R2, can be interpreted as the proportional decrease, or

proportional shrinkage (PS), in the squared multiple correlation after an appropriate cross-validity

estimate is made. Therefore, 1-PS provides an estimate of the precision power of the regression

17
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equation. The derivation of sample size formula (3) substitutes for the quantity R2-Re2 with E,

which represents the shrinkage tolerance as either absolute (e.g. E=.05) or relative (e.g. E=.2R2).

The relationship between the two formulas becomes obvious: the numerator in formula (10) also

represents the shrinkage tolerance level, using a sample value for the cross-validity coefficient

rather than an estimated population value. Therefore, formula (10) can be rewritten as

PP = 1 - E/R2 (11)

and therefore

= R2 (PP * R2) (12)

to use similar variables as formula (3). For example then, if researchers wanted the Reg after

shrinkage to be no less than 80% of the expected sample R2 of .50 with four predictors, they

would set PP=.80, and therefore choose E=.10 to use in sample size formula (3). Plugging the

values into formula (3) provides a sample size of N=[5(2-2(.50)+.10)]/.10=55. Thus, 55 subjects

should provide a large enough sample so that Re2>.40, which is 80% of the assumed p2=.50.

Precision power thus describes how well the regression equation will predict in other

samples relative to its ability to predict in the derivation sample. For example, a predetermined

acceptable PS level of .20 provides precision power of .80. To carry the example out fully,

precision power of .80 indicates that the sample was large enough to allow the sample R2 to

shrink by only 20%. To provide a numerical example, if sample R2=.50 and Re2=.40, the sample

value has shrunk only by 20%; whereas, a smaller sample size may cause R2=.50 to shrink to

Rc2=.30, which is a 40% decrease_andleads to a precision power of only .60.

Because the term power has special meaning in the research literature, a word of warning

may be prudent at this time. Precision power as defined here, 1-PS, looks similar in form to the
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theoretical definition of statistical power, 1-13, where B is the probability of a Type II error.

However, PS is not the probability of error but the tolerance level for error, or more precisely,

shrinkage. Furthermore, the term statistical power is used in reference to a test of an hypothesis;

the term precision power, on the other hand, applies not to a statistical test, but to an evaluation

of the generalizability of a regression equation.

The Stein (1960) cross-validity formula (sometimes attributed to Darlington, 1968 and

Herzberg, 1969) was used for Reg because it is has been recommended by many scholars who

have investigated cross-validation techniques from a random model perspective (e.g. Claudy,

1978; Huberty & Mourad, 1980; Kennedy, 1988; Schmitt et al., 1977; Stevens, 1986, 1992a). It

should be noted that the authors are aware that the Stein formula is not uniformly regarded as the

best cross-validation formula (e.g. Cattin, 1980a; Darlington, 1990; Drasgow et al., 1979;

Rozeboom, 1978). Statistical power was calculated as the proportion of total number of correct

rejections to the total tests performed for each testing situation.

Research Design

A Monte Carlo analysis of the precision power rates of several regression sample size

methods was performed. Because a variety of factors may influence precision power, several

testing situations were considered. Four factors were manipulated and fully crossed for the

present study. First, four effect sizes were used which represented the expected R2: .10, .25, .50,

and .75. The .10 and .25 values were chosen because they are found in Park and Dudycha's

(1974) tables and because they are very close to Cohen's (1988) medium and large effect sizes of

.13 and .26, respectively. The .50 value was chosen because Stevens (1992a) recommends it as

"a reasonable guess for social science research" (p. 125). The .75 value was chosen to include a
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value considered very large for comparison and completeness. Second, data were generated for

five sets of predictors: 2, 3, 4, 8, 15. Again, these numbers were chosen for ready comparison

with tables provided by both Park and Dudycha (1974) and Gatsonis and Sampson (1989) and

because they provide a wide range of predictor numbers. Third, six separate values for the true

population p2 were used: .00, .05, .10, .25, .50, and .75. For p2=.00, the appropriate identity

matrix was used; for the other values, correlation matrices were created with R2 values within

±.005 of these values using a procedure described in the Data Source section below. The

population correlation values of .10, .25, .50, and .75, were chosen because they are the effect

sizes chosen above. The .05 value was chosen to provide a population value lower than the .10

expected R2 value and .00 was chosen to verify Type I error rates.

Finally, nine sample size selection methods were compared: the new Lord-based precision

power method, the Rozeboom-based method, a method based on Sawyer (1982), Park and

Dudycha (1974), Cohen (1988), Gatsonis and Sampson (1989), the 30:1 subject-to-variable ratio

from Pedhazur and Schmelkin (1991), the I\150+8p formula from Green (1991), and the 15:1

ratio from Stevens (1992a). For both the precision power. method and also the Rozeboom-based

method, the value for E was set both absolutely and proportionally (.05 and .2R2, respectively).

For Park and Dudycha's method, P(p-pc)=.90 and P(p-pce)=.95 were both included.

Therefore, a total of 12 different methods were included in the analysis.

Sawyer (1982) considers that the inflation factor, k, should be set as a constant. If k is set

as a constant, though, Sawyer's method simplifies to a rule-of-thumb. Therefore, for this study,

Sawyer's method was adapted in an attempt to provide the method with an effect size. Sawyer's

formula works such that as the inflation factor decreases, so does MSE, which also decreases
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shrinkage. The value of k was set such that k=l+E, where E=R2-Re2 or more specifically,

E=R2-.8R2. This is the same calculation for E as described for the precision power method in a

previous section.

Monte Carlo Procedures

Turbo Pascal 6.0 code was written to calculate the sample sizes for the new method, the

ratio methods, the combination method from Green (1991), and Cohen's (1988) method (after

looking up the stored tabulated lambda values). The relevant sample size tables from both Park

and Dudycha (1974) and Gatsonis and Sampson (1989) were stored as data for access by the

computer program, as were the appropriate tables for Cohen's lambda values. Where the

precision power method and the Rozeboom-based method were set absolutely, the value of E was

set to .03 for expected R2.10 and E=.05 for expected R2>.10; this is also the way Park and

Dudycha's tables were handled. Both Cohen's and Gatsonis and Sampson's tables were entered

using power=.90. It should be noted that for the case of expected R2=.50, the tabulated sample

size for p=.70 from Gatsonis and Sampson was used; for the case of expected R2=.10, the p=.30

value was chosen; and for expected R2=.75, the table values for p=.85 were used. Because in

each of these cases the p value used was less than the square root of the expected R2, the sample

sizes chosen for the Gatsonis and Sampson method were slightly larger than exact values would

have provided. The 12 methods do provide a variety of suggested sample sizes, sometimes

drastically different (see Table 3).

A Turbo Pascal 6.0 program was written that generated and tested 15,614 samples for

each of the above 1440 conditions. The number of iterations was chosen based on the work of

Robey and Barcikowski (1992), who suggested that 15,614 iterations are needed for nominal
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a=.05, nominal power of .80, Type I error rate for the two-tailed proportions test of .05, and the

fairly stringent magnitude of departure a±. 1 a. For each iteration's sample, the program

performed a standard regression analysis (all predictors entered simultaneously), calculated the

necessary statistics and probabilities, tested the null hypothesis of zero correlation at a .05

significance level, and calculated the shrinkage/cross-validity estimates and precision power rates

needed for the study.

Because the null hypothesis (Ho: p=0) was known to be false in each sample where

p2>.00, each rejection at a .05 significance level qualified as a correct rejection and was recorded

as such. For each of these conditions, then, empirical statistical power rates were calculated

simply as the proportion of the 15,614 tests that were correctly rejected. Also for each condition,

average shrinkage and average cross-validity were calculated. Additionally, precision power for

each condition was calculated as the average of the ratios of the Stein cross-validity coefficient to

the sample R2. For the occasions when the Stein estimate was negative, precision power was set

to zero, which is its theoretical minimum. Finally, these summary data were compared to

determine how well the sample size methods performed both absolutely and relatively. Simulated

samples were chosen randomly to test program function by comparison with results provided by

SPSS/PC+ version 5.0.1. Additionally, Type I error rates were found under the condition where

population p2=.00, also to validate program functioning. In only one of the 240 null-case samples

tested did the empirical error rate fall outside of Bradley's (1978) "fairly stringent criterion"

a±. I a, or .045_ a ..055. Further, precision power rates were larger than .05 in only 2 of the 240

null cases.
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The program was run as a MS-DOS 6.2 application under Windows 3.1 on a computer

equipped with an updated Intel Pentium-100 processor, which has a built-in numeric processor.

Extended precision floating point variables, providing a range of values from 3.4x10932 to

1.1x104932 with 19 to 20 significant digits, were used.

DATA SOURCE

Because this research focused on power for the random model of regression, data were

generated to follow a joint multivariate normal distribution. The first step was to create

population correlation matrices that met the criteria required by this study, namely, appropriate

numbers of variables and appropriate p2 values. These correlation matrices were then used to

generate multivariate normal data following a Cholesky decomposition procedure recommended

by several scholars (Chambers, 1977; Collier, Baker, Mandeville, & Hayes, 1967; International

Mathematical and Statistical Library, 1985; Karian & Dudewicz, 1991; Kennedy & Gentle, 1980;

Keselman, Keselman, & Shaffer, 1991; Morgan, 1984; Ripley, 1987; Rubinstein, 1981).

For each range of p2 and number of predictors (25 total conditions), a correlation matrix

was created using the following procedure. Uniform random numbers between 0.0 and 1.0 were

generated using a subtractive method algorithm suggested by Knuth (1981) and coded in Pascal

by Press, Flannery, Teukolsky, and Vetterling (1989). These values were entered as possible

correlations into a matrix and the squared multiple correlation, R2, was calculated. If the R2 value

fell in the required range, the matrix was then tested to determine whether it was positive definite.

Press, Teukolsky, Vetterling, and Flannery (1992) suggested that the Cholesky decomposition is

an efficient method for performing this test -- if the decomposition fails, the matrix is not positive

definite. The algorithm for the Cholesky decomposition used in this study was adapted from Nash
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(1990). This procedure was repeated until the necessary 25 matrices were created. These

correlation matrices were then used to generate the random samples as described below. It is

worthwhile to note that with given values of R2, sample size, and numbers of predictors, the

distribution of the squared cross-validity coefficient does not depend on the particular form of the

population covariance, or in this case correlation, matrix (Drasgow et al., 1979)`

The Cholesky decomposition of a matrix produces a lower triangular matrix, L, such that

LLT=E, where E is a symmetric, positive definite matrix such as a covariance or correlation

matrix. This lower triangular matrix, L, can be used to create multivariate pseudorandom normal

variates through the equation

= + XLT (13)

where Zii is the multivariate normal data matrix, Ili is the mean vector, and X contains vectors of

independent, standard normal variates. When i,0, the multivariate pseudorandom data is

distributed with mean vector zero and covariance matrix E . Independent pseudorandom normal

vectors, N, with means, zero, and variances, unity, were generated using an implementation of the

Box and Muller (1958) transformation adapted from Press, Flannery, Teukolsky, and Vetterling

(1989). The Box and Muller algorithm converts randomly generated pairs of numbers from a

uniform distribution into random normal deviates.

RESULTS

The primary concern of this study was whether one or more of the methods examined

provides consistently accurate precision power rates. That is, does any method of selecting

sample sizes for regression recommend sample sizes that guarantee a certain level of precision
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power regardless of the number of predictors and the value of expected R2? The results discussed

below also include confirmation of several results from the preliminary study.

Accuracy of the Methods

In order to answer the question of which method provides the most consistently accurate

precision power (PP) rates, results of the 12 methods were compared using an adaptation of

Robey and Barcikowski's (1992) intermediate criterion for robustness. Specifically, the accuracy

of the level of proportional shrinkage (PS) was tested using the criterion PS±1/4PS. For example,

when precision power is expected to be .80, proportional shrinkage is expected to be .20. The

interval for acceptable accuracy is therefore .20±.05, or .15 1:1S .25; in terms of precision power,

the acceptable interval is .75._P13.85. (It should be noted that the Stein cross-validity estimates

were verified to fall within the expected ranges based on the precision power rates found in the

study.)

The preliminary study (Brooks & Barcikowski, 1994) showed that when researchers

choose an expected R2 that overestimates p2 (either explicitly by choice of an inflated effect size

or implicitly by use of an inappropriate rule-of-thumb), power rates are unacceptably low.

Similarly, when researchers choose an expected R2 which is much lower than the population p2,

power rates are unnecessarily high (more subjects than necessary are recommended). Results

from the current study corroborate these findings, thereby reinforcing the need for thoughtful

choice of effect size in regression research. For example, with four predictors and a population

p2=.25, and using sample sizes recommended by the precision power method results in the

following scenarios: (a) with 22 subjects for expected R2=.75, average PP=.18 and the average

Stein cross-validity estimate shrinks from R2=.38 to Re2=.0008; (b) with N=55 for expected

25



Precision Power 25

R2=.50, PP=.50 and Stein shrinks from R2=.30 to Rc2=.17; (c) with N=155 for expected R2=.25,

PP=.82 and Stein shrinks from R2=.27 to Re2=.23; and (d) with 455 subjects recommended for

expected R2=.10, PP=.94 and the Stein cross-validity estimate shrinks from R2=.26 to Re2=.24.

Consequently, the only cases of real interest for a discussion of accuracy are those cases

where the researcher has made a reasonable estimate of p2. In all 20 conditions where expected

R2=p 2, both the proportional precision power method (E=.2R2) and the absolute precision power

method (E=.05) provided PP rates between within the interval PS±1/4PS. The expected PP rates

for the proportional precision power method remain at .80 regardless of the other conditions;

therefore the acceptable interval for PP rates was .75 l's13.85. Note, however, that PP rates for

the absolute method change as expected R2 changes (e.g. if E=.05 and expected R2=.50, expected

PP=.45/.50=.90, but PP=.80 if E=.05 and expected R2=.25). Therefore, when expected R2 was

.75, the acceptable PP rates fell within the range .917131:k .95, where PP was expected to be

.933.

The proportional Rozeboom-based method provided PP rates within the range

.75 .11P. .85 in 13 of the 20 cases where R2=p 2. The absolute method provided PP rates within

±1 /4PS of their expected rates in 15 of the 20 cases. Park and Dudycha's method at a probability

of .95 provided PP rates within ±1 /4PS in 9 of 20 cases; at a probability of .90, Park and Dudycha's

method did not provide any accurate PP rates. Sawyer's method, as adapted for this study,

provided accurate rates in the interval .75 only in the five cases for expected R2=.75.

Both Cohen's method and that of Gatsonis and Sampson provided PP rates much below what was

expected. Finally, the remaining methods, based on rules-of-thumb, did not provide consistent
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empirical PP rates over any set of conditions (which would have been required since none of these

methods provides a means to choose a PS value).

Supplemental Analysis

After determining which methods provide accurate and consistent precision power rates at

the levels tested above, a supplemental analysis was run to examine three of these methods at

several different levels of precision power and expected R2=p2. Specifically, the precision power

method, the Rozeboom-based method, and a new adaptation of Sawyer's (1982) method were

analyzed using the same method described above for creating data. Because the adaptation of

Sawyer's (1982) method used in the primary analysis was not as fruitful as desired, a different

choice was made for the inflation factor, k, in the supplemental analysis: the inflation factor was

set as k=1 +.1R2 for the supplemental analysis. While this inflation factor does not provide a

means to set acceptable precision power a priori as did the original inflation factor, it will

generally provide larger sample sizes than the original k and therefore provide higher empirical

precision power rates.

In this supplemental analysis, only the cases where the researcher estimates an effect size

for p2 correctly were included. Additionally, only 2660 iterations were performed, which meets

Robey and Barcikowski's (1992) recommendation for an intermediate criterion of robustness

(a±1/4a) when nominal a=.05, nominal power is .80, and the Type I error rate for the two-tailed

proportions test is .05. There were a total of 288 conditions examined such that (a) a priori

precision power rates were varied from .60 to .90 by .10, (b) the number of predictors were

varied from 1 to 9, inclusively, and (c) the expected R2=p2 values were varied from .20 to .90 by

.10.
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The supplemental data were analyzed in the same manner as the primary data. That is, the

accuracy of the level of proportional shrinkage (PS) was tested using the criterion PS±1 /4PS. The

precision power method provided accurate PP rates in all but 8, or over 97%, of these cases. The

Rozeboom-based method provided accurate rates for 196, or 68%, of the 288 cases. The

Rozeboom-based method was least accurate when the number of predictors was small and the

expected R2 was large. The adaptation of Sawyer's method used in the supplemental analysis did

not provide consistent PP rates at all levels of expected R2; however, across the number of

predictors within expected R2 values, the method did indeed provide consistent PP rates (which

differs from the rules-of-thumb which varied both across predictors and across R2 levels). The

Sawyer method provided higher PP rates for the larger expected R2 values, but never fell below

.70.

CONCLUSIONS

The primary concern of this study was whether one or more of the methods examined

provides consistently accurate precision power rates. That is, does any method provide reliable

precision power rates regardless of the number of predictors and the value of expected R2? The

answer is that, assuming the researcher can make a reasonable estimate of the population p2, the

precision power method provides the most consistent precision power rates.

If the researcher cannot make a reasonable estimate of p2, however, then no method

works well. In other words, effect size is just as critical when choosing sample sizes in multiple

regression as it is in other statistical methods, because all methods are inadequate when expected

R2 deviates too far from p2. The results from these studies make it clear that researchers who

hope to develop an efficient prediction model using multiple regression must be concerned with
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the size of their derivation samples, starting with an appropriate expected R2. It may be worth

noting that although Stevens (1992a) suggested an effect size of p2=.50 as a reasonable guess for

the social sciences when a better estimate is unavailable, Rozeboom (1981) believes that p2=.50

may be an upper bound and Cohen (1988) offers p2=.26 as a large effect size. Of course, the best

choice of effect size is based on evidence from the research literature or from past research

experience.

Several questions remain regarding the selection of sample sizes for regression studies.

The most critical question concerns the choice of a priori precision power rate. It is useful to

remember that "for both statistical and practical reasons, then, one wants to measure the smallest

number of cases that has a decent chance of revealing a significant relationship if, indeed, one is

there" (Tabachnick & Fidell, 1989, p. 129). Although the precision power method provided PP

rates within the accuracy criterion more frequently than did any other method, it typically

provided values larger than the preset rate, which in turn implies a small excess of subjects.

Specifically, the precision power method yielded PP greater than expected (but still within the

accuracy range) in 259, or 90%, of the 288 supplemental conditions tested. In contrast, the

Rozeboom-based method only reached the stated PP level in 47, or 16%, of the 288 cases. From

a conservative viewpoint, this provides additional rationale for choosing the precision power

method over the Rozeboom-based method. However, from a practical perspective, more subjects

are required using the precision power method. For example, with eight predictors at expected

R2=.25, the precision power method recommends 279 subjects while the Rozeboom-based

method suggests 248, or 31 fewer, subjects. The resulting PP rate for the precision power

method was .824 and the PP rate for the Rozeboom-based method was .803. Clearly, the
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Rozeboom-based method is preferable in this case, unless a better predetermined precision power

choice can be made for the precision power method.

Because the precision power method provides highly accurate results, it is reasonable to

take its conservative nature into account and use a lower a priori PP rate. Further examination of

the data, particularly the supplemental data, indicates that it is not unreasonable to relax the preset

precision power rate as the expected R2 value decreases and the number of predictors increases.

Indeed, this corresponds to the situations in which the Rozeboom-based method provides

adequate power rates and preferable (i.e. more practical) sample size recommendations as

compared to the precision power method. Based on review of average Stein estimates and

standard deviations of those estimates, PP rates as low as .70 appear to provide reasonable results

in the more extreme of these situations. Conversely, PP rates of .80 may be inadequate at the

other end of the spectrum (high expected R2 and few predictors). For example, for 3 predictors at

an expected R2=.80, the precision power method for PP=.80 recommends 14 subjects and

provides and average PP=.801, average R2=.824, and average Stein estimate of .673; however,

only 24 subjects are recommended for precision power of .90, which provides PP=.906, R2=.812,

and Stein=.739 (with a much smaller standard deviation, 0.104 vs. 0.179). Clearly, effect size

impacts the selection of sample size in complex ways. Such results make it more obvious as to

why some scholars have recommended sample sizes of 100, 200, and even 500, no matter how

many predictors, and others have suggested subject-to-variable ratios as large as 40:1 (e.g.

Kerlinger & Pedhazur, 1972; Nunnally, 1978; Pedhazur, 1982; Tabachnick & Fidell, 1989).

Interestingly, what occurs when using the supplemental Sawyer method (i.e. k=1 +.1R2) is

essentially what is described above. At expected R2=.90, Sawyer provides precision power

30



Precision Power - 30

consistently in the .92 range. As expected R2 decreases, the Sawyer PP rates decrease gradually

(but remain consistent across predictors within R2 levels) until they apparently reach a level of

about .66 when expected R2=.10. Comparison of Stein estimates and standard deviations

between the precision power method and the Sawyer method show that, at small R2 values (e.g. 6

predictors and expected R2=.20), one may be willing to use 106 fewer subjects (287 for the

precision power method at PP=.80 vs. 181 for the supplemental Sawyer method) with 10% less

precision power (.81 vs .71) to get an expected Stein estimate which is only 1% less (.174 vs.

.163) and has a comparable standard deviation (.044 vs. .058). Of course, the flexibility of the

precision power method allows researchers simply to choose an a priori precision power of .70

rather than forcing them to use the Sawyer method.

Summary

The seriousness of concern about sample sizes and precision power in regression is not

obvious -- after all, researchers have shrinkage and cross-validity formulas available to "correct"

for inadequate sample sizes. However, there is a theoretical relationship that both E(R2) and

E(IV) converge toward p2 as sample size increases (Herzberg, 1969). Indeed, further analysis of

the current data shows that, within population p2 ranges, there is a strongly negative relationship

(from r=-.83, p<.001, when p2=.05 to r=-.86, p<.001, when p2=.75) between sample R2 and the

Stein cross-validity coefficient Re2. Indeed, a similar negative relationship exists between R2 and

adjusted R2, or Ra2 (from r=-.55, p<.001, when p2=.25 to r=-.67, p<.001, when p2=.10).

Therefore, even though Ra2 differed from the population p2 by an average of only .005 (standard

deviation of .009), a larger sample size will still provide a better Ra2 estimate of p2. The good
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news, if any, is that adjusted R2 differed from p2 by more than .02 in only 76, or 5%, of 1440

cases; further, all 76 of those cases had sample sizes less than 27.

The theoretical convergence noted by Herzberg (1969) may be best explained by an

example that illustrates the differences between choosing a sample based on .80 precision power

versus .80 statistical power. With four predictors and an expected R2=.50, the precision power

formula requires a sample of 55 and gives an average PP=.82, average statistical power of .999,

average R2=.531, average Ra2=.493, and an average Stein Itt2=.442; however, Cohen's method

requires only 16 subjects but provides only an average PP=.37, average statistical power of .68,

average R2=.610, average Ra2=.468, and average Re2=.208. The prediction model produced using

a sample size from the precision power formula will better estimate both p2 (using Rae) and pct

(using Re2), and will provide more stable regression weights. Therefore, this model will predict

better in future samples because the efficiency of a prediction model depends not on the estimates

of p2 and pct, but on the stability of the regression coefficients.

The research presented in this paper is important for the reasons mentioned at the outset.

Specifically, sample sizes for multiple linear regression, particularly when used to develop

prediction models, must be chosen so as to provide adequate power both for statistical

significance and also for generalizability of the model. It is well-documented and unfortunate that

many researchers do not heed this guideline, choosing instead to abide by the rule cited by Olejnik

(1984): use as many subjects as you can get. Possibly more tragic are the cases where

researchers have used a groundless rule-of-thumb to choose their sample sizes or have neglected
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to report an appropriate shrunken R2; these studies probably provide inaccurate conclusions

regarding the topics under investigation.

For whatever reasons, empirical study into power for multiple regression has been lacking.

Rules-of-thumb have existed for decades with little empirical or mathematical support. Indeed,

both the current study and its predecessor (Brooks & Barcikowski, 1994) have found very limited

value for rules-of-thumb in regression. Additionally, Sample size methods offered by Park and

Dudycha (1974), Cohen (1988), and Gatsonis and Sampson (1989) were each found lacking in

some way. Sawyer's (1982) original method simplifies into a rule-of-thumb if the inflation factor

is set as a constant, which renders it only as useful as the rules-of-thumb described above. Two

adaptations of Sawyer's method, which attempted to provide the method with an effect size,

provided mixed results. The only method which provided consistently accurate power for

generalizability was the new precision power method. The preliminary study's Rozeboom-based

method finished as the second best method, but with problems that make it less desirable

especially for large expected R2 and few predictors.

It is hoped that both the evidence presented and the simplicity of the method developed in

the current study encourage researchers to consider more seriously the issues of power and

sample size for regression studies. Although power in regression studies may have additional

meaning than for other statistical designs, it is no less important. Researchers must recognize the

potential danger of choosing an inappropriate effect size (either implicitly or explicitly) or ignoring

effect size entirely. Further, no statistical analysis or correction (such as an adjusted R2) can

repair damage caused by an inadequate sample. Researchers must remember that a sample must
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not only be large enough, but that it must also be random and appropriately representative of the

population to which the research will generalize (Cooley & Lohnes, 1971; Miller & Kunce, 1973).
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Table 1

Examples of Cross-Validation and Shrinkage Formulas

Formula Attributed To:

Rae = 1 - (N-1)(1-R2)

(N-I))

Rae = 1 - (N-1) (1-R2)
(N-p-1)

Ra2= R2- p (1-R2)
(N-p-1)

Rae = R2- p (1-R2)

(N-1')

Rae = R2- (p-2)(1-R2) - 2 (N-3) (1-R2)
(N-p-1) (N-p-1)(N-p+1)

Reg = 1 - (N-1) (N+p+0 (1-R2)
(N-p-1) N

Reg = 1 - (N-1) (N-2) (N+1) (1-R2)
(N-p-1) (N-p-2) N

Reg = 1 - (N+p) (1-R2)

(N-1))

R.02= 1 - (N+p+1) (1-R2)
(N-p-1)

Wherry (1931)

Wherry (1931); Ezekiel (1930);
McNemar (1962);
Lord & Novick (1968);
Ray (1982, p. 69) [SAS]

Norusis (1988, p. 18) [SPSS]

Dixon (1990, p. 365) [BMDP]1

011cin & Pratt (1958)

Nicholson (1960)
Lord (1950)

Stein (1960)
Darlington (1968)

Rozeboom (1978)

Uhl & Eisenberg (1970)
Lord (1950)

Note: Ra2 represents an estimate of p 2; R.c2 is an estimate of pc2.

1p'=p+1 with an intercept, pi=p if the intercept=0.
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Table 2

Rules-of-Thumb for Sample Size Selection

Rule Author(s)

N 10p Miller & Kunce, 1973, p. 162
Halinski & Feldt, 1970, p. 157 (for prediction if R z .50)
Neter, Wasserman, & Kutner, 1990, p. 467

N z 15p Stevens, 1992, p. 125

N z 20p Tabachnick & Fidell, 1989, p. 128 (N z 100 preferred)
Halinski & Feldt, 1970, p. 157 (for identifying predictors)

N z 30p Pedhazur & Schmelkin, 1990, p. 447

N z 40p Nunnally, 1978 (inferred from text examples)
Tabachnick & Fidell, 1989, p. 129 (for stepwise regression)

N z 50 + p Harris, 1985, p. 64

N 10p + 50 Thorndike, 1978, p. 184

N > 100 Kerlinger & Pedhazur, 1973, p. 442 (preferably N>200)

N z (2K2-1) +1(7-p Sawyer, 1982, p. 95 (K is an inflation factor due to
(K2-1) estimating regression coefficients)

Note: In the formulas for sample size above, N represents the suggested sample size and p represents the
number of predictors (independent variables) used in the regression analysis.
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Table 3

Sample Sizes Suggested by Each Method for Each Level of Expected R2

Number of
Predictors Method E(R2)=.75

Sample Size for:

E(R2)=.50 E(R2)=.25 E(R2)=.10

2 Precision Power (E=.2R2) 13 33 93 273
Rozeboom-based (E=.2R2) 9 22 62 182
Precision Power (E=.05) 33 63 93 183
Rozeboom-based (E=.05) 22 42 62 122
Park & Dudycha (p=.95) 23 42 62 119
Park & Dudycha (p=.90) 18 31 45 85
Sawyer 13 18 33 78
30:1 60 60 60 60
50 + 8p 66 66 66 66
15:1 30 30 30 30
Cohen 6 13 38 115
Gatsonis & Sampson 11 20 45 135

3 Precision Power (E=.2R2) 17 44 124 364
Rozeboom-based (E=.2R2) 13 33 93 273
Precision Power (E=.05) 44 84 124 244
Rozeboom-based (E=.05) 33 63 93 183
Park & Dudycha (p=.95) 35 64 91 174
Park & Dudycha (p=.90) 28 50 71 133
Sawyer 17 24 44 104
30:1 90 90 90 90
50 + 8p 74 74 74 74
15:1 45 45 45 45
Cohen 7 14 44 130
Gatsonis & Sampson 13 23 51 151

4 Precision Power (E=.2R2) 22 55 155 455
Rozeboom-based (E=.2R2) 17 44 124 364
Precision Power (E=.05) 55 105 155 305
Rozeboom-based (E=.05) 44 84 124 244
Park & Dudycha (p=.95) 44 82 117 220
Park & Dudycha (p=.90) 37 66 93 173
Sawyer 22 30 55 130
30:1 120 120 120 120
50 + 8p 82 82 82 82
15:1 60 60 60 60
Cohen 8 16 48 144
Gatsonis & Sampson 14 25 55 165
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8

15

Precision Power (E=.2R2)
Rozeboom-based (E=.2R2)
Precision Power (E=.05)
Rozeboom-based (E=.05)
Park & Dudycha (p=.95)
Park & Dudycha (p=.90)
Sawyer
30:1
50 + 8p
15:1
Cohen
Gatsonis & Sampson

Precision Power (E=.2R2)
Rozeboom-based (E=.2R2)
Precision Power (E=.05)
Rozeboom-based (E=.05)
Park & Dudycha (p=.95)
Park & Dudycha (p=.90)
Sawyer
30:1
50 + 8p
15:1
Cohen
Gatsonis & Sampson

39
35
99
88
78
68
38

240
114
120

12

19

69
65

176
165
131

118
67

450
170
225

19
27

99
88

189
168
144
124

53
240
114
120
20
32

176
165
336
315
261
214

93
450
170
225

26
42

279
248
279
248
202
171
98

240
114
120
61
69

496
465
496
465
331
292
173
450
170
225
78
88

819
728
549
488
373
311
233
240
114
120
183
205

1456
1365
976
915
600
524
413
450
170
225
235
256
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